Two Dynamic Programming Methodologies in Very Large Scale Neighborhood Search Applied to the Traveling Salesman Problem
نویسندگان
چکیده
We provide two different neighborhood construction techniques for creating exponentially large neighborhoods that are searchable in polynomial time using dynamic programming. We illustrate both of these approaches on very large scale neighborhood search techniques for the traveling salesman problem. Our approaches unify previously known results and offer schemas for generating additional exponential neighborhoods that are searchable in polynomial time. The first approach is to define the neighborhood recursively. In this approach, the dynamic programming recursion is a natural consequence of the recursion that defines the neighborhood. In particular, we show how to create the pyramidal tour neighborhood, the twisted sequences neighborhood, and dynasearch neighborhoods using this approach. In the second approach, we consider the standard dynamic program to solve the TSP. We then obtain exponentially large neighborhoods by selecting a polynomially bounded number of states, and restricting the dynamic program to those states only. We show how the Balas and Simonetti neighborhood and the insertion dynasearch neighborhood can be viewed in this manner. We also show that one of the dynasearch neighborhoods can be derived directly from the 2-exchange neighborhood using this approach. Subject classifications: Traveling Salesman: Very large scale neighborhood search for the TSP. Heuristics: Very large scale neighborhood search for the TSP. Dynamic Programming: Two DP methodologies for heuristic search for the TSP.
منابع مشابه
A dynamic programming methodology in very large scale neighborhood search applied to the traveling salesman problem
We provide two different neighborhood construction techniques for creating exponentially large neighborhoods that are searchable in polynomial time using dynamic programming. We illustrate both of these approaches on very large scale neighborhood search techniques for the traveling salesman problem. Our approaches are intended both to unify previously known results as well as to offer schemas f...
متن کاملUsing Grammars to Generate Very Large Scale Neighborhoods for the Traveling Salesman Problem and Other Sequencing Problems
Local search heuristics are among the most popular approaches to solve hard optimization problems. Among them, Very Large Scale Neighborhood Search techniques present a good balance between the quality of local optima and the time to search a neighborhood. We develop a language to generate exponentially large neighborhoods for sequencing problems using grammars. We develop efficient generic dyn...
متن کاملSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کاملSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کاملRandom gravitational emulation search algorithm (RGES (in scheduling traveling salesman problem
this article proposes a new algorithm for finding a good approximate set of non-dominated solutions for solving generalized traveling salesman problem. Random gravitational emulation search algorithm (RGES (is presented for solving traveling salesman problem. The algorithm based on random search concepts, and uses two parameters, speed and force of gravity in physics. The proposed algorithm is ...
متن کامل